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Abstract
Based on extraction of resonances from quantal time delay, a theorem relating
quantal time delay and the number of resonances below a certain energy
is proved here. Several illustrations from quantum mechanics, neutron
reflectometry and hadron resonances are presented.

PACS number: 03.65.Nk

The physics of weakly-bound systems and resonances has been of great interest for the
important role it plays in nuclear and particle physics. In particular, deriving reliable
information about unstable and short-lived states leads to a deeper understanding in the theory
of elementary particles in the case of hadron resonances [1] and hypernuclei [2], compound
nuclear resonances [3] in (n, γ ) and (p, γ ) reactions and in the development of new models
and theories in the active field of radioactive nuclei [4]. The research on halo nuclei is also
intimately connected with the search for superheavy nuclei [5]. The structure of these elusive
states is usually in the form of two-body, three-body or many-body resonances [6]. It would
be interesting if we could infer from the phase-shift data for π–π or η–d or α–α scattering
whether, respectively, a ρ-meson around E = 770 MeV is formed, or a hypernucleus or a
resonant α-cluster [7] is formed. Clearly, we would like to be sure of our analysis by studying
simple, non-trivial illustrations from quantum mechanics. In this paper, we present various
illustrations to elucidate how resonant structures can be reliably extracted and understood.

The concept of central importance for our considerations is that of time delay. Time delay,
T , is defined as the difference between the density of states with and without interaction. This
reduces to the following relation [5] between T and the S-matrix [8],

T = − 1
2 ih̄ Tr S† dS

dE
(1)

for a general form of interaction. For central potentials, for the lth partial wave, Tl reduces to
h̄dδl/dE where δl is the difference between phase-shift δl(E) and hard-sphere scattering phase-
shift δH

l (a, E) and where a is the range of interaction. For s-wave scattering, δH
l (a, E) = −ka,

where k is the wave number.
The complex-energy poles of time delay on an unphysical sheet like those of the S-matrix

represent resonances. Consequently, the peaks in T (E) are signatures of resonances [9].
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In a system where the number of single-particle states is modified in the presence of an
impurity, the change in the states is related to the energy derivative of the phase-shift. The total
change in the density of states leads to the Friedel sum rule, which is basically a statement of
charge-neutrality [10]. On the other hand, an energy-integral of the phase-shift is shown to be
connected to the energy of the impurity—Fumi’s theorem. All the filled states contribute to
the energy of the impurity via electron–impurity interactions.

In the context of nuclear physics, some recent works [11] treat the effect of the continuum
by considering the contribution of narrow resonances. These narrow resonances are assumed to
be like broadened bound states. This is, of course, not a valid assumption for broad resonances
occurring in particle physics. When this assumption holds, the change in the single-particle
continuum level density, δρ, in the presence of a potential V is found by subtracting the free
particle level density ρ0 from the total level density, ρ:

δρ = ρ(ε) − ρ0 =
∑
l,j

(2j + 1)

π

dδlj

dε
(2)

the last being due to Friedel [12]. The right-hand side of (2) is connected with time delay.
We will consider an energy integral of time delay in this paper and illustrate it by a variety of
physical situations of simple and advanced nature.

For a narrow resonance at energy E0 of width �, time delay has a Lorentzian or a
Breit–Wigner (B–W) form:

τ(E) = h̄�/2

(E − E0)2 + �2

4

. (3)

Then, it follows that the number of resonances below E∗ for a fixed partial wave is given by1

nR = 1

π

∫ E∗

0

(
dδ̄(E)

dE

)
dE

= N + 
, 0 < 
 < 1. (4)

This is related to the approaches based on level-density [11, 13]. Since most of the methods fail
to determine the absolute values of phase-shifts, therefore, the right-hand side of (4) would be
different from the expression [δ̄l(E

∗)− δ̄l(0)]/π . However, following somewhat more general
considerations along the lines of [14], the spectral property of time delay implies that∫ E∗

0
T (E)dE = nRh. (5)

This is also valid for broad resonances, as shown in illustration IV. To appreciate (5), the
following remarks are in order: (i) (5) is not Levinson’s theorem; (ii) if the energy range
includes bound states also, singularities will appear for bound states and non-zero widths
appear for resonances, the shapes being Lorentzian only for narrow ones (see also comments
at the end of illustration II).

The construction of time delay above using the complex energy eigenvalues may
remind one of the potential scattering formalisms due to Kapur and Peierls [15]. To
illustrate, with the s-wavefunction in the range of potential, the complex roots, E , of
h̄∂u/∂r(E, r = a) = i

√
2mEu(E, r) are taken as resonances here. However, in [15],

√
2mE

is replaced by
√

2mE, where E is fixed. Moreover, Kapur–Peierls’ formalism is designed to
yield a non-unitary S-matrix.

At resonance, the phase-shift δ̄(E) = arctan
(

�/2
E−E0

)
, due to the presence of an inverse

trigonometric function, has an essential ambiguity of nπ where n remains uncertain.

1 For resonances with �j � Ej , the S-matrix is S(E) = exp[2iδ̄(E)] = �N
j=1(

E−Ej −i�j /2
E−Ej +i�j /2 ).
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On the other hand, the ambiguity disappears in T (E) as one gets a purely algebraic expression,
making the time delay unambiguous and hence more reliable than the phase-shifts themselves.
The second derivative of δ̄(E) reveals that on either side of E = E0 the curvature changes
sign and hence a point of inflection in the variation of δ̄(E) is a necessary signature for the
existence of a resonance.

Resonances which are complex energy Gamow–Siegert states of a potential generally
arise when the potential is localized (e.g., short-range) or when there is a barrier of a finite
width attached to the well. The square well represents the former when l = 0 and the latter
when l > 0. However, for simplicity we present a s-wave square well potential [16] and a
s-wave Dirac barrier potential V0δ(r−a) [16] which represents the second situation. It is worth
noting that illustrations III and IV are novel as they do not fall in the above categorization.
Believing that a fundamental result is understood better in terms of diverse examples, we
present them below.

1. Illustration I: square-well potential2

To begin with, we consider the most familiar potential V (r < a) = −V0, V (r � a) = 0, as
an example to illustrate our results on resonances. It may be noted that a reliable description
of narrow resonances is important for separating the background. The s-wave S-matrix can be
written as

S0(E) = ik tan pa + p

ik tan pa − p
. (6)

The complex poles (resonances) of S0(E), i.e., the roots of ik tan pa = p, are equivalent to
demanding the outgoing wave, u0(r � a) = eikr , instead of u0(r > a) as given above. The
s-wave time delay for a square-well potential can be obtained as

T0(E) = h̄
V0 tan pa + apk2 sec2 pa

2pk(p2 + k2 tan2 pa)
. (7)

Relevant complex poles of the S-matrix, (Ej − i�j/2), such that Ej , �j > 0, are known to
be the resonant energies. With the help of Find Root by Mathematica, by taking 2m = 1 = h̄,
and fixing the values of V0 and a, we find the resonant energies (e.g., poles of (6), for l = 0).
We then construct the time delay as a sum of Lorentzians as these resonances are narrow. The
solid lines in figure 1 display the exact values of Tl(E) for l = 0, 1, 9, 10 for a square-well
potential (V0 = 5, a = 10) up to an energy E = 10. The dashed lines show the time delay
as calculated using the first fifteen complex energies Ej − i�j/2. Excellent reproduction of
the time delay can be seen to testify to the representation of the time delay by a sum over
Lorentzians for a localized potential possessing resonances. We check that Ej are the energies
where the peaks in time delay occur. Further, we check that �j is nothing but twice the inverse
of the height of the jth peak. The values of the integral of the time delay up to E = 10,

nR (4), are mentioned in each part of figure 1(a) which can be verified to give the number of
resonances as depicted by the number of peaks in Tl(E).

Interestingly, in the above calculations when l = 9, 10, we find that the first complex
roots E = 0.384 99–0.479 894 i = EA and E = 0.541 725–0.574 161 i = EB respectively do
not show up as peaks in Tl(E). Moreover, if they are included in the summation (4), they spoil
the reproduction of the time delay at other energies. Similarly, when V0 = 5 and a = 2, we
find that E1 = 0.023 387–0.542 466 i = EC and E2 = 9.383 65–4.430 07 i are the poles of

2 For a square barrier, we find resonances above the top of the barrier using time delay and verify our result for the
number of resonances.
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(a)

Figure 1. (a) Time delay, T (E), for a square-well potential (V0 = −5, a = 10) for four
values of angular momentum l = 0, 1, 9, 10. The solid lines are the exact calculation and the
dashed lines represent a sum of Lorentzians using the first 15 resonances (poles of S-matrix on
an unphysical sheet). Interestingly, in the case of l = 9, 10 the very first complex energies
EA = 0.384 99−0.479 84i and EB = 0.541 725−0.574 161i, respectively are not included (see
text for details). Note that the values of nR agree with the number of peaks in all the plots of time
delay, illustrating (4). (b) The first peaks corresponding to figure 1(a) are separated out and shown
for clarity.

S0(E) (6). We find that E1 does not lead to a peak in T0(E), whereas E2 shows up as a broad
peak in T0(E). Note that in these examples �j > Ej and the corresponding B–W profile
appears only partly for energies E > 0, most of it creeps into the negative energy regime.
We rule out EA,EB,EC as resonances by studying the corresponding wavefunctions. The
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(b)

Figure 1. (Continued.)

wavefunctions at energies equal to the real part of these complex energies for the l = 0 case
show scattering state-like behaviour whereas the localization within r < a is inhibited.

2. Illustration II: repulsive Dirac delta s-wave barrier

The Dirac delta barrier, V0δ(r − a), V0 > 0 in the three-dimensional Schrödinger equation
[16], even in s-wave, supports the Gamow–Siegert states. The poles of the S-matrix can be
worked out to be the complex roots of k cot ka − aV0 = ik, a condition which one also gets
by using the outgoing wave boundary condition at r = a. The s-wave quantal time delay can
be found as

T0(E) = h̄
aV0 tan2 ka + ak2 sec2 ka

2[k2 tan2 ka + (k + aV0 tan ka)2]
. (8)

For V0 = 10 and a = 1, we find the first four poles of the S-matrix and construct the time delay
as a sum of Lorentzians (shown as dotted lines in figure 2). Even with only five poles, the
T0(E) (8) (solid line) is excellently reproduced by the dotted line in figure 2. By an integration
of time delay up to energy E = 170, we get the value of the integral nR = 4.0114, correctly
indicating four resonances or metastable states. In the limit of V0 → ∞, we get Ej → j 2π2h̄2

2ma2

and �j → 0 these states will be the bound states of a particle contained between two rigid
walls of width a. Thus, for large values of V0 one gets Dirac delta like spikes in T0(E) at
energies E = Ej .

3. Illustration III

While studying the reflectometry of the polarized neutrons from magnetized superconductors,
Zhang and Lynn [17] arrived at a novel result wherein a single, pronounced, parameter-
dependent dip occurs in the reflectivity. In terms of simple quantum mechanics this means
that the reflectivity, R(E), of the potential-step barrier, V (x > 0) = V1 + V2(1 − e−x/a),
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Figure 2. Excellent reproduction of the time delay (8) by a sum of Lorentzians for the Dirac
delta potential by using just the first five complex energies (resonances). A value of nR close to 4
illustrates the existence of four resonances up to E = 170.

V (x � 0) = 0, as a function of energy shows a single, pronounced, spike-like minimum at
an energy slightly above the step, for certain sets of parameters, (V1, V2, a). Usually when
a semi-infinite potential is smooth, R(E) is a smoothly converging function of energy. A
discontinuity of the derivative at a point in a semi-infinite potential turns out to be the essence
[18, 19] of this novel reflectivity. An interesting claim [20] that the energy (E = Ed) at
which this reflectivity minimum occurs corresponds to a ‘half-bound state’ has been refuted
by the help of several model potentials [19]. Let us take the case of an exponential step where
r(E) = √

R(E) eiθ(E) is given by

r(E) = ikJ−2ipa(2qa) + qJ ′
−2ipa(2qa)

ikJ−2ipa(2qa) − qJ ′
−2ipa(2qa)

(9)

where p =
√

2m(E−V1−V2)

h̄
and q =

√
2mV2

h̄2 . Whenever 2qa is close [17] to the zeros of J0(z),

a single pronounced minimum exists in R(E). More precisely, when V1 = V2 = 1 and
a = 1.31(2m = 1 = h̄) the dip in reflectivity occurs at E = 2.0445 = Ed [18]. We find that
the reflection time delay, dθ

dE
, possesses a single dip at E = Ed , confirming the existence of

a resonance there (see figure 3). Since the contention is regarding the dip in reflectivity, we
have calculated the reflection-phase-shift (θ ) and its derivative. Eventually, the integration (4)
of time delay over a long range of energy (from E = 2 to E = 4, 6, 10) divided by π has
been checked to yield a number very close to 1. Thus, the composite semi-infinite potential
steps [18, 19] are a new type of model potential which are neither localized nor is there a
well attached to a barrier. They, however, possess a single resonance. We also find that
the low energy, single minimum in reflectivity of the composite potential wells [19] such as
V (x) = −V0 exp(−|x|/a) is nothing but a resonance.

4. Illustration IV

Usually, narrow resonances are treated as elementary particles [21]. However, even relatively
broader resonances like the excited state of a nucleon called 
++(1232) are treated as particles.
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Figure 3. An instance of reflectivity, R(E), dip in the exponential semi-infinite potential step
when V1 = V2 = 1 and a = 1.31. At E = 2.0445 there occurs a dip in R(E) and T (E) and the
(reflection) phase-shift, θ(E) displays a point of inflection. The value of nR from E = 2 up to
E = 4, 6, 10 has been found to be very close to 1.

Here we would like to demonstrate that the time delay calculated from the available [22] elastic
scattering phase-shifts of π+ and p (P 33) yields a peak at E = 1218 MeV of width � =
129 MeV (see figure 4) corresponding to the formation of the well-known baryon resonance
called the 
-resonance which has mass as 1232 MeV and width as 120 MeV. This result can
also be found in [23] where there is a more detailed study on unflavoured baryon resonances.
The integration (4) of time delay in the energy range given in figure 4 divided by π yields 0.87
instead of unity, simply because the resonance data are truncated at the lower energies. This
illustration, in addition to [23] shows that (4) and (5) are also valid for non-central interactions
and for broad resonances with lifetimes ∼10−23 s. It should also be noted that one is in a
relativistic regime with energies of the order of GeV. The concept of time delay holds in the
relativistic regime because of its connection with the S-matrix (1) [24].

Hitherto, the energy-integral of the first derivative of phase-shift over a large range of
energy is supposed to either vanish [25] or yield the number of bound states [21] via the
well-known result in (10). In such a confusing scenario, we have brought out the correct
meaning of the energy-integral mentioned above. We have revealed that the integral (4) does
not vanish and it yields the number of resonances possessed by a potential. Since time and
energy are conjugate variables, (5) can be interpreted as an analogue of the Bohr–Sommerfeld
quantization. This is also a quantum analogue of some results in classical scattering theory
obtained 20 years ago by Narnhofer and Thirring [26].

Finally, we would like to make some observations on Levinson’s theorem in its original
form that relates the phase-shift at zero energy to the number of bound states, nB , possessed
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Figure 4. The well known baryon resonance, 
++ [1], is demonstrated as a peak in time delay
in the phase-shift data [24] of the scattering : π+ + p → 
++. We get M
 = 1218 MeV and
�
 = 129 MeV, whereas the standard values are M
 = 1232 MeV and �
 = 120 MeV. The
value of nR we get is 0.87.

by an attractive potential: nB = δl(0)/π [8].3 However, it is very often written as [8, 21, 27]4

nB = [δl(0) − δl(∞)]/π. (10)

It is important to note that (10) seems to relate the negative energy bound states to the phase-
shift at an infinitely positive energy. This is basically done to provide a reference at infinite
energy where the phase-shift is assumed to be zero. Although for short-range potentials,
δl(∞) is zero, this is not generally true (see footnote 4). In a specific calculation, one may find
δl(0) and δl(∞) with ambiguous factors of, say, m1π and m2π with m1,m2 as two arbitrary,
uncontrollable integers, having nothing to do with the potential. To obtain phase-shifts free
of such ambiguities (modulo π ), one needs to employ special methods like the variable phase
approach [28] and an integral representation of phase-shift found recently [29].
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